Unrestricted Fibonacci and Lucas quaternions
نویسندگان
چکیده
Many quaternion numbers associated with Fibonacci and Lucas or even their generalizations have been defined widely discussed so far. In all the studies, coefficients of these quaternions selected from consecutive terms numbers. this study, we define other for usual quaternions. We also present some properties, including Binet's formulas d'Ocagne's identities, types quaternions.
منابع مشابه
Fibonacci Sequences of Quaternions
In this paper Fibonacci sequences of quaternions are introduced, generalizing Fibonacci sequences over commutative rings, and properties of such sequences are investigated. In particular we are concerned with two kinds of Fibonacci sequences of generalized quaternions over finite fields Fp, with p an odd prime, and their periods.
متن کاملFibonacci-Lucas densities
Both Fibonacci and Lucas numbers can be described combinatorially in terms of 0− 1 strings without consecutive ones. In the present article we explore the occupation numbers as well as the correlations between various positions in the corresponding configurations. (2000) Mathematics Subject Classification: 11B39, 05A15
متن کاملNew Fibonacci and Lucas primes
Extending previous searches for prime Fibonacci and Lucas numbers, all probable prime Fibonacci numbers Fn have been determined for 6000 < n ≤ 50000 and all probable prime Lucas numbers Ln have been determined for 1000 < n ≤ 50000. A rigorous proof of primality is given for F9311 and for numbers Ln with n = 1097, 1361, 4787, 4793, 5851, 7741, 10691, 14449, the prime L14449 having 3020 digits. P...
متن کاملMaximal hypercubes in Fibonacci and Lucas cubes
The Fibonacci cube Γn is the subgraph of the hypercube induced by the binary strings that contain no two consecutive 1’s. The Lucas cube Λn is obtained 5 from Γn by removing vertices that start and end with 1. We characterize maximal induced hypercubes in Γn and Λn and deduce for any p ≤ n the number of maximal p-dimensional hypercubes in these graphs.
متن کاملTrigonometric Expressions for Fibonacci and Lucas Numbers
The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamental journal of mathematics and applications
سال: 2021
ISSN: ['2645-8845']
DOI: https://doi.org/10.33401/fujma.752758